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COLLAPSE OF PARTIALLY MIXED REGIONS IN STRATIFIED FLUIDS

Introduction

There is a sizeable literature devoted to the collapse of
regions of mixed fluid immersed in density stratified media. The
physical application is the description of energy exchange between
the stratified fluid and the region of mixed fluid. The mixed
region is generated by an overturning internal wave (Long [1]) or
by the turbulence in the wake of a moving obstacle (Schooley and
Stewart [ 2], Schooley [3]). Thus, the generation of the mixed
region is a turbulent process and the mixing is accomplished by
g the turbulent eddies. The mixed region grows in size by entrainment
g of surrounding fluid until the kinetic enmergy in the turbulence is
; dissipated. The mixed region is statically unstable and, when the
turbulence decays sufficiently, it proceeds to collapse to its
level of equilibrium.

T A S P TR

There have been numerous attempts to model this collapse
process. Except for models put forward by Ko [4] and Bergin [5],
the collapse stage has been completely decoupled from the mixed

- region growth stage. Most physical models have taken as an initial
condition a two-dimensional circular region of quiescent mixed
fluid. The physical models have been represented mathematically
in numerous ways to describe the ensuing collapse process. Schooley
and Stewart [ 2] considered the mixed region to be a small perturba-
tion from the ambient equilibrium state and solved the linearized,
inviscid equations governing the resulting fluid motions by an
eigenfunction expansion. The mixed region was assumed to be circular
in sh. pe with a density perturbation of Gaussian form. This method
has been applied again by Schooley and Hughes [6] but the mixed
region was assumed to be fully mixed in this case. In either case,
the linearized governing equations are not strictly valid unless
the density perturbation is indeed a very small one. The case in
which the amount of mixing is small but uniform across the mixed
region can be validly treated in this manner and it has been solved
by Hartman and Lewis [7].

The fully mixed case is not as interesting physicaily as the
original diffusely mixed case modelled by Schooley and Stewart [2]
: ; because of the sharp disconcinuity in density at the edges of the
| i mixed region. On the other hand, this discontinuity is helpful in
’ ; distinguishing the fluid interior to the mixed region from that

Manuscript submitted June 25, 1974.




exterior to the region. The experiment of Wu [8] took advantage of
this discontinuity by tagging the mixed region fluid with dye. This
idealization has been helpful also in various mathematical models

of the process. Mei [9], Padmanabhan et al [10], and Bell and Dugan
[11] have solved models that account for nonlinearity in the govern-
ing equations but which omit realistic interactions of the mixed
region with its surroundings. Wessel [12] and, more recently, Dugan
et al [13] and Young and Hirt [14] have solved the full nonlinear
equations numerically for the case of sharp discontinuity in the
density at the edge of the mix2d region. The numerical method is
the most complete and accurate method if proper care is taken to
verify the accuracy of the calculations. Thus, it appears to be

the most useful method for any further studies of mixed region
collapse.

The studies referred to above have brought to light most of
the physical mechanisms present in the collapse phenomenon. This
understanding is quite limited though in that knowledge is sparse
for the more realistic case in which “he turbulence does not com-
pletely homogenize the fluid in the mixed region. In particular,
what are the mixed region shapes and energy balances when the
mixing is uniform but not complete and when the mixing is not
uniform. These questions are taken up here and the numerical
method utilized by Dugan et al [13], and modified as ‘ndicated in
the appendix, is helpful in answering them.

Analysis

The mixed region is taken to be circular in shape and to be
at rest initially. The density structure is linearly increasing
with depth outside the region so the Brunt-Vaisala frequency there
is constant to the accuracy of the Boussinesq approximation. In
the mixed region, the density profile is taken to have several forms
as shown in Figure 1.
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The case 1 is assumed to be uniformly mixed in that the density
gradient in the interior is constant but is less thawu that outside
the region, That is, the density profile is

_ i - @%- ¥ 20,
P(l\z 1—(33 ‘ca, (1)

where v is the radial distance from the center of the mixed region,
The case 11 has the density profile

TWY= 1]l - exp(-"ar)l (2)

and the case 111 has

’ 4

gy = l_g,i.ix- exp(-"/cﬁ)} (3)
The latter case in a sense is intermediate between the case 1 having
a sharp edge and the case II having a very diffuse edge. 1In the
nonuniformly mixed cases 11 and I1I, the density perturbation is
continuous and the mixing is complete only at the mixed region center.
The amount of potential energy stored in the mixed region varies
with the tvpe of mixing and it is

1. PE =Yg e N -e) o

t 4
11. PE = Y €N Q,

1.4
111, PE = i €N % . (4)

In each case, the potential erergy is defined as the work required
to construct the mixed regior from the linearly stratified suiround-
ings in a reversible manner. The cases II and I11 have the same a-

mount of potential energy and that amount is one half that of a fully
mixed region of the same 'radius'.

The governing equations are the Navier-Stokes equations and,
in the absence of turbulence, the nonlinear effects are important
but the viscous and diffusive ones are not for reasonable scales,
Several finite difference methods of solving the nonlirear equations
are available. Wessel [12] initially solved a problem of this type
in which the mixing was complete with a scheme similar to the one
of Dugan et al [13], The solutions obtained were in good agreement
with the experiment of Wu: {8] but the energy conservation properties
of the code were uncertain, Young and Hirt [14] solved the same
problem but the method used appears to dissipate the available
energy quite rapidly. The modified MAC code used therein is stable
only because of the presence of nonzero viscosity and the temporal
history of the mixed region widtih does not compare well with the
experiment, The method used by Dugan et al [13] has been shown to
conserve energy quite well so+it is a useful one to study the




energetics in the problem at hand., It was also shown to predict
results very similar to those of the experiment of Wu [S] for the
fully mixed case. The numerical method is a modified form of that
originally put forward by Williams [L5) ; the formulation is laid

out in Dugan et al {13) and it has been modified as indicated in the
appendix to allow grid stretching and to better conserve energy.

Uniform Mixing

The case 1 of partial but uniform mixing is considered first.
The numerical solutions for the mixed region shape versus time are showm
in Figure 2 for € = .81 and .49 where

e=B. B - (5)

and @& andﬁare defined in expression (1). The solution for € = ,49
shows little change from the fully mixed case in the early stage of
motion. However, eventually, all the shapes for even those values

TIME (BRUNT-VAISALA PERIODS Y

Figure 2
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of € approaching zero are lifferent from the fully mixed case. The
equilibrium positions of all fluid particles in the partially mixed
region are above or below the mixed regivon centerline so that the
shape never collapses to a line on the axis of the cylinder as it
does in the fully mixed case. The final equilibrium shape does not
appear to be far from an ellipse in cases for which €>§,

The vidth of the mixed region as a function of time is shown
in Figure 3 for several values of € .
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In all cases, the width increases to a maximum and exhibits a
slightly underdamped oscillation to its equilibrium width.

This case of uniform, partial mixing is simple er.ough to be
amenable to analysis. Hartman and Lawis [7] have obtained an
analytical solution for this case and, to the validity of their
solution, the width of the mixed region is easily shown to be

alt)
“a

©

= 2—<—:-z(l-ea)J'(N{)(m\'1 (6)




This solution is valid only when the amount of mixing is small; that
is, it is valid in the limit ofe-=1 , However, it is plotted in
Figure 4 and it compares well with the numerical results for short
time for all cases in which computations were made. The nonlinear
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effects are clearly apparent in the mixed region widths in Figure 4
in the cases in which tte mixing is greater than 20% (€¢.8 ) as the
numerical and the linear solutions digress. Even in the case of €95
though, the solutions are not identical. The nonlinear solutions
outdistance the linear ones and they do not oscillate uas quickly.,

The solution method of Bell and Dugan
in the iixed region is assumed to be conserved can be extended to
apply to the case of partial mixing. The governing equation that
corresponds to equation (12) in Bell and Dugan [11] is

[11] in which the energy

fea*) a4 (1-te) 2o (1-2€)= o
(

The solution of this equation for small time goes like
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Of course this expression is never strictly valid since the mixed
region never conserves its energy. On the other hand, it is not
restricted to €>1 , Dugan et al [13] have modified this analysis
with the assumption that there is an equipartition of kinetic energy
inside and outside the mixed region and have verified the resulting
analytical prediction with the numerical solutions in the case of

complete mixing. Making that assumption here, the governing equation
is

o Al
(L4l ot +(L-2ea) & i (L-2¢)= o

This cannot be solved in closed form as in the fully mixed case but
the solution valid for small time is

a(d) & L'_e 2 "_ 4(4
a°~1+ : Nt - o(N ). -

It is of interest to note that the short time behavior of the solution
of Hartman and Lewis [7] (see equation (6) above) is identical to this
expression. The comparison between the numerical results and the

asymptotic solution (7) above is shown in Figure 3.

) ( The energy content of the mixed region can be obtained
approximately from the foregoing results. Bell and Dugan [11] were
able to compute energies under the assumption that the mixed region
shape was elliptic. Dugan et al [13] showed that the region shape
was not elliptic after about one half of a Brunt-Vaisala period in
the fully mixed case., However, the energetics are integrals of the
solution so they tend to be only weakly dependent upon the details
of the mixed region shape. The validity of the assumption of an
elliptic shape was shown by Dugan et al [13] by computing the ener-
getics numerically for times up to about one Brunt-Vaisala period.
The results agreed reasonably well with those predicted by Bell and
Dugan [11]. The mixed region shapes predicted numerically here and
shown in Figure 2 are even more elliptic than in the fully mixed
case so the assumption of an elliptic shape for energetics computa-
tions is a better one here,

From the above discussion, it is apparent that the energy
content of the mixed region can be computed from its width. For an
elliptic shape in the uniform, partially mixed case, the potential
energy is

x Br o -g\¢ b -
PE=%e, N (L-€aat) a a ) ()

valid to the Boussinesq approximation, and the kinetic energy is

da\: 2 sl
KE=158(’°(ﬁ) 0,(1+Q:Q ) (8b)
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The values of o.(t) and 9%4t can be obtained from Figure 3 to give
the results shown in Figure 5. The case of € =.8( is illustrated.

i T T T | |

A,V numerical
equations (8)

ENERGY (% OF TOTAL)

o g

Nt
Figure 5

The result is sufficient to conclude that, as in the fully mixed
case, the energy content of the mixed region is largely given up to
the exterior fluid in one Brunt-Vaisala period. This case of €=,g|

is quite representative of the other cases run so plots of those
results are omitted.

Figure 5 also shows the kinetic and potential energy content
of the mixed region as predicted by equations (8a,8b) in which att)
and da/dt are given by the theory of Hartman and Lewis [7], i.e.
expression (6) here. Although the result for the kiretic energy is
somewhat different and the linear theory strictly is not valid in
this case, the results predicted by the linear theory support the
numericsl prediction of the quick release of energy by the mixed
regior,




Gaussian Mixing

The density perturbation of Gaussian fovm in case Il is quite
diffuse compared with the case 1. Analyses of mixed region shapes
and widths are not very meaningful since the edge of the mixed region
is not clearly defined. Nevertheless, approximations to shapes can be
determined if one is content to follow fluid particles that have some
initially given positions.

The shape of a densc mass of particles that is initially in
a circle having the radius G is plotted with time in Figure 7.
Compared with the previous case, there is an interesting difference

TIME O RN
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Figure 7

in the final equilibrium positions of the particles. The shape is not
elliptic at all but it shows a distinct peak near the original vertical
centerline. This equilibrium shape is explained by the type of density
perturbation. Since the amount of mixing goes to zero smoothly near
the edge of the mixed region, the final equilibrium positions of the
particles near the top and the bottom of the region are not very far
from the initial positions. Thus, although the particles near the
center move appreciably because of the greater amount of mixing there,
those near the upper and lower edge move only slightly.

The energy content of the mixed region is not clearly defined
since there is no 'edge' to the mixed region so no computations are

made.

Modified Gaussian Mixing

As in the previous case, numerical results have been obtained
for the case I1I. The particle distribution that was initially in the
region Y &Q is displayed versus time in Figure 8. This initial density
perturbation is closer to the case 1 having a sharp edge but the small
amount of mixing near the edge in this case continues to give final
equilibrium shapes with a peak near the vertical centerline.

10
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Finally, one more observation about the final width of the
mixed region is useful. The potential energy for a mixed region of
elliptic shape is given by expression (8a). Since, in the final
stage of collapse, the potential energy is all given up to the
exterior fluid, this expression implies that the final equilibrium
half-width of the mixed region is

-1
Q=€ (9)

This expression is in good agreement with the numerical results as
shown in Figure 6.

1.2 I - :
1+ =
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—— equation (9) *
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Figure 6

The result is compared with that of Hartman and Lewis {[7] which
implies that

a=a,(2-€) (10)

and which, evidently, is valid only in the limit of very small mixing.
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Conclusions

The final equilibrium shape of partially mixed regions is shoewn
to depend crucially upon the initial density perturbation that defines
the mixed region. The equilibrium shapes obtained for uniformly mixed
regions are elliptic in cross section but the shapes obtained in cases

of nonuniformly mixed regions show a distinct peak near the vertical
centerline.

The case of uniform, partial mixing is less realistic than the
nonuniformly mixed cases but it lends itself to energetics computations.
In this case, for any degree of mixing, the energy content of the mixed
region is practically all given up to the exterior fluid by the time of
one Brunt-Vaisala period after the initiation of collapse. There is
little reason to believe that this result would be any different for
other types of mixing. Also, the final equilibrium width of the mixed
region is close to the width predicted by a simple theory; that is

; -2
Qim alt) ~ QON: N

{—v00
where Ngis the Brunt-Vaisala frequency outside tte region and N‘-_ is
the initial uniform Brunt-Vaisala frequency inside the region.

The temporal dependence of the mixed region width in the case
of uniform, partial mixing is compared with analytic results from an
integral energetics model and a linearized differential model. Non-
linear effects are shown to be important in mixed regions that are
mixed as much as 207% or more; that is, when N:ﬁ: £ .8
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Appendix 1

The purpose of this section is to give details on the
additional numerical features introduced by the stretching of the
mesh employed in Dugan et al [137 in both the x- and 7- directions.
The reader is referred to section 2 of the above reference to obtain
a complete description of the conservation, 2ccuracy and stability
of the constant mesh scheme; a discussion is also contained in
Williams [157 and Piacsek and Williams [16’.

Figure 9 illustrates the stretched mesh in one direction and
the arrangement of the variables on their respective grid points.
A discussion of the g-ieral approach to conservation on stretched

[ === ’
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Figure 9

meshes is given by Bryan [ 17, and will not be repeated here. However,
we will illustrate below the essential ideas by applying the scheme

to the one-dimensional transport of momentum and temperature. For
inviscid flows, the equations

ou M >

=4k 3% (1.1)
AT T

v Y (1.2)

will serve adequately to demonstrate the technique. Using Figure 9
and the quadratically conserving scheme of Piacsek and Wiliiams [16),
we may write

A R i e W/ S W g o

R).L",/z_ Ax.“’,/t Axi+ll‘.

(1.3)

(E) = ui.f'z;:r_i‘fl —u'.-",IT{—I
P R AX -

[

14




’ - " g - o P g T
i R e e L e e e e e b b el R e o

Note from Figure 9 that OX 4p, 8nd OX . refer to elements of different
mesh sequences, one 'centered' on Uiyy and the other on"ﬁ: i
respectively. Upon multiplying expresston (1.3) by Axk*yz and
expression (1.4) by 6x; and summing over (, the sums encountered in
Dugan et al [13] are produced and these were shown to be conserved,
How:-ver, whereas the T-boxes are actually centered on‘T}, the u-boxes
are centered on LL;‘yi, resulting in a loss of second order accuracy
in the truncation error unless the mesh is stretched in certain
special ways. The current mesh stretching has only first order
accuracy, and is given by

Xa,

X/, =i
%= e °-1)(e +1) (1.5)

In the calculations in this reporf, the mesh was stretched such that
the final grid length in the horizontal was eighteen times the
initial length, and the total box size was eight radii wide and

four radii high. The stretching enabled a reduction in the number
of horizontal mesh points by a factor of five.

In addition to the changes outlined above, the computations
performed in solving the Poisson equation in Dugan et al [13] are
now done in double precision so that roundoff errors are minimized.
This gives an order of magnitude improvement in the conservation of
total energy in the computation box; the change in total energy in
fourteen Brunt-Vaisala periods of computation is less than 5%
versus somewhat less than 5% in single precision arithmetic.
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